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Developmental anesthetic neurotoxicity: from animals to humans?
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Abstract Several animal studies have demonstrated that

most routinely used general anesthetics induce widespread

neuroapoptosis and long-term neurocognitive impairment

in the immature brain. These findings have generated great

interest among pediatric anesthesiologists and other prac-

titioners regarding the safe use of general anesthetics in

pediatric patients. Several human retrospective studies

failed to confirm whether or not anesthesia exposure during

the crucial phase of brain development induces long-term

neurocognitive deficits in humans. Since the clinical rele-

vance of the results of general anesthesia in animal exper-

iments is unknown, it is unreasonable to directly utilize the

results derived from animals and retrospective human sur-

veys to guide clinical practice at the present time. Clearly,

additional prospective randomized controlled trials are

needed in humans to determine the effects of general

anesthesia on neurodevelopment. In this review, we sum-

marize currently available laboratory and clinical evidence

for anesthetic neurotoxicity. Furthermore, we discuss the

implications of these results for clinical anesthesia.
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Introduction

Advances in pediatric surgery have required the wide-

spread and prolonged administration of general anesthetics

to millions of neonates and young children in operating

rooms and intensive care units (ICU). Conventionally,

anesthesia effects are thought to be fully reversible and

anesthetics are assumed to have no deleterious impact on

the central nervous system (CNS). However, overwhelm-

ing experimental data in animal models suggest that early

exposure to clinically-used general anesthetics could cause

widespread neuroapoptosis and long-term neurocognitive

deficits [1–4]. These experimental data raised considerable

concerns about whether the same risk exists in humans and

prompted researchers to search for clinical evidence [5].

Unfortunately, several recently published retrospective

studies using different methodologies have failed to con-

firm or rule out the possibility of anesthetic neurotoxicity in

humans. Because some inherent limitations exist in these

epidemiological investigations, clinicians have not been

able to draw definitive conclusions regarding the risk of

anesthesia on human brain development [6]. Based on the

lack of definitive data from controlled clinical trials, it is

impossible to establish an association between early anes-

thesia and neurocognitive development. Thus, it would be

inappropriate to withhold anesthesia from pediatric patients

during surgery [7].

Experimental evidence for anesthesia-induced

developmental neurotoxicity

Since their introduction, general anesthetics have been

administered to neonates and young children, even though

the exact mechanisms by which these drugs abolish the

response to noxious stimulation remains largely unre-

solved. Common pathways of most clinically utilized

general anesthetics include inhibition of N-methyl-D-

aspartate (NMDA) receptors and/or activation of
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c-aminobutyric acid (GABA) receptors [8]. Since NMDA

and GABA-mediated neuronal activity are essential for

normal functioning during mammalian brain development

[9], it is conceivable that anesthetics also have other non-

anesthetic actions that result in abnormalities of neuron

survival and function.

Nearly 60 years ago, concerns regarding adverse effects of

general anesthesia exposure on the developing brain were first

raised. It was observed that administration of vinyl ether,

cyclopropane or ethyl chloride to young children might cause

personality changes, which was defined as the possible long-

term neurological sequela of anesthesia [10]. Approximately

three decades later, rodent studies suggested that prenatal

exposure to prolonged sub-anesthetic doses of halothane led to

decreased synaptic density and stunted behavioral develop-

ment in postnatal rats [11]. In 1999, a landmark study dem-

onstrated that treatment of neonatal rats with drugs that

blocked NMDA receptors could trigger significant neuroa-

poptosis in the developing brain [1]. Subsequently, extensive

investigations have shown that most currently used general

anesthetics can induce significant neuroapoptosis and long-

term neurocognitive deficits in immature animals.

Specifically, neuroapoptosis and neurocognitive deficits

have been observed following exposure to midazolam [12,

13], ketamine [12, 14–20], propofol [4, 21–23], isoflurane

[2, 3, 13, 24–35], desflurane [30, 31] or sevoflurane [30–32,

36, 37]. The toxic effects of most of these agents are

dependent on dose and exposure time. Ketamine’s ability

to induce neurodegeneration was only observed at high

doses, after prolonged exposure or with repeated adminis-

tration [12, 14, 16, 18–20]. Similar dose-dependent effects

have been demonstrated for propofol [21–23] and isoflu-

rane [35]. Although combinations of different agents may

allow smaller doses of each agent, more prominent neu-

rotoxic effects were documented when anesthetics with

both NMDAR and GABAR actions were administered

simultaneously [2, 4, 12, 17, 28]. A notable exception is

dexmedetomidine, which does not produce sedation via

effects on GABA or NMDA receptors. This agent was not

shown to have neurotoxic properties, and it could amelio-

rate isoflurane-induced neuroapoptosis when administered

to neonatal rats [26].

In addition to general anesthetics, opioids are analgesics

frequently used in pediatric anesthesia to decrease the dose

requirement for anesthetics. Theoretically, their co-

administration may mitigate anesthetic neurotoxicity.

However, it has not yet been determined whether devel-

opmental exposure to opioids is safe. Some studies have

suggested perinatal opioid administration can cause acute

neuronal degeneration and long-term learning impairment

extending into adulthood [38, 39].

Perhaps, the most intriguing evidence for the neurotox-

icity of anesthetics comes from experiments using nitrous

oxide or xenon, both NMDA antagonists. Even under

hyperbaric conditions, nitrous oxide does not trigger mas-

sive neuroapoptosis by itself. However, when it was co-

administered with isoflurane, nitrous oxide can exacerbate

neurotoxicity induced by isoflurane [2, 24]. There is con-

flicting evidence on the potential of xenon, the noble gas, to

induce or protect against neuroapoptosis in the developing

brain. When administered as the sole anesthetic, the effect of

xenon was deleterious in one study [40], but not so in another

study [24]. In contrast to nitrous oxide, xenon was shown to

alleviate isoflurane-induced neuroapoptosis [24, 40].

In addition to studies showing the neurotoxic effects of

anesthetics, there are also some studies that observed a lack

of deleterious effects following exposure to the anesthetic

agents mentioned above [18, 23, 41, 42]. One study even

noted that prenatal isoflurane exposure did not increase but

rather decreased the rate of neurodegeneration and

improved juvenile spatial learning/memory function in rats

[29]. Moreover, several studies reported that neuroapop-

tosis was detected after neonatal anesthesia exposure, but

animals did not demonstrate impaired neurocognitive

dysfunction when tested in adulthood [3, 17]. Traditionally,

anesthesia-induced neurocognitive deficits are thought to

be permanent and irreversible, but a recent study suggested

that the deleterious effects of anesthesia on memory could

be attenuated (even completely eliminated) by delayed

environmental enrichment [37].

Nonetheless, recent data suggests that the detrimental

impact of early anesthesia on the immature brain is not

limited to acute neuroapoptosis. We have found evidence

of a relationship between anesthesia-induced long-term

neurocognitive dysfunction and the reduction of excitatory

neurotransmitter release in the cortex and hippocampus

[43]. There is also evidence that anesthetics can funda-

mentally alter synaptogenesis [23, 44] and suppress neu-

rogenesis [33], which raises the question as to whether

long-term neurocognitive deficits should be attributed to

suppressed neurogenesis and impaired synaptic transmis-

sion or to widespread neuroapoptosis (or to both).

It is important to recognize that general anesthetics are not

the only agents in the human environment that can trigger a

neurotoxic response. Neonatal exposure to a hypercarbia has

been demonstrated to cause notable neuroapoptosis in brain

areas previously shown to be susceptible to anesthesia-

induced neuroapoptosis [45]. These results suggest that at

least some of the neurotoxicity could be explained by anes-

thesia-induced respiratory depression. Other agents, such as

magnesium (used in pre-eclampsia/eclampsia) [46] and

dexamethasone [47] (commonly used in pre- or neonatal

medicine) can also cause widespread neuroapoptosis and

long-term neurocognitive deficits in immature rodents.

Another important feature of developmental anesthetic

neurotoxicity is that the period of maximal susceptibility
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coincides with the period of synaptogenesis, also known as

the brain growth spurt period. This period is the most

active phase of neuronal differentiation, synaptogenesis

and functional network formation [48]. During this period,

immature neurons are exquisitely sensitive to exogenous

perturbations and pharmacological influences [49], and a

transient disturbance might have an irreversible impact on

brain development. The critical stage of synaptogenesis

occurs in different species at different times, according to

their life span and ontogeny. In rodents, which have rela-

tively focused brain development, the period appears to be

confined to the first 2 weeks after birth, peaking sharply on

postnatal day 7 (P7) [48]. In humans, brain growth begins

at the third trimester of gestation and continues for several

years after birth [48]. Therefore, the 7-day-old rodents used

in most studies might be equivalent to human neonates at

approximately 32–36 weeks of gestation [50].

Although anesthesia may trigger neuroapoptosis, pro-

grammed cell death is also a normal phenomenon that

occurs as the brain matures. During brain development, as

many as 50–70 % of the entire neuronal population will

undergo natural cell death to maintain the normal structure

of the CNS [51]. Thus, it remains unclear whether anes-

thesia accelerates apoptosis of neurons that were obliged to

die due to physiological degeneration, or if it destroys

healthy neurons that were not destined to die. Both normal

and decreased adult neuronal density could be observed

after neonatal exposure to different anesthetic regimens,

which may represent hastened physiological apoptosis and

increased pathological cell death [3, 28].

Is anesthesia neurotoxic in infants and children?

Unfortunately, the clinical significance of the animal

studies performed in this area remains controversial.

Because of tremendous interspecies variations, it is

extremely difficult to directly extrapolate experimental

results to clinical practice. On a weight-based comparison,

demonstration of anesthetic neurotoxicity in animals

requires substantial exposure, both in dosage and duration.

In some rodent studies, toxic doses of anesthesia are C20-

fold greater than clinically used doses, even after allo-

metric scaling is performed to account for differences in

body size [52]. On the other hand, from a developmental

perspective, rat brain development occurs in a matter of

weeks, while it takes several years for a human brain to

mature [48, 50]. In this regard, several hours of anesthesia

in rodents may be equivalent to a month-long exposure in

human neonates [14, 50]. Similar doses or durations of

administration might never be used in clinical practice so

that animal experiments might overestimate the human

risk.

The direct extrapolation of laboratory findings to clinical

anesthesia also has been seriously questioned, because of

totally different circumstances between animal experi-

ments and clinical management. Anesthesia in small

rodents can cause progressive lactacidosis, hypercarbia and

hypoglycemia, and all of these physiological disturbances

during anesthesia have been shown to cause widespread

neuroapoptosis in neonatal rodents [3, 45]. Other con-

founding variables, such as nutritional deprivation [3, 53]

and repetitive maternal separation [53] following pro-

longed anesthesia, may also lead to learning disabilities

and behavioral changes. Although most recent animal

studies have performed arterial blood gas analysis to

exclude the possibility that neuroapoptosis was induced by

respiratory or metabolic distress during anesthesia, it is still

possible that subtle and transient deficits were not detected.

Furthermore, even normal blood gas values do not ensure

adequate cerebral perfusion and oxygen saturation. In

pediatric anesthesia, oxygenation, ventilation and other

hemodynamic variables are continuously monitored and

maintained within normal ranges. Human neonates rou-

tinely receive nutritional support in the perioperative per-

iod, which minimizes the risks of physiologic derangement

and malnutrition. Another controversial issue is that many

of the drugs that have been evaluated (midazolam, nitrous

oxide and ketamine) are not the major agents used in

current pediatric anesthesia.

Neuroapoptosis is observed in animals exposed to

anesthesia without painful stimuli. Unlike animal studies,

anesthesia in the clinical setting always includes significant

noxious stimulation produced by surgical operations. It

seems possible that noxious stimulation without proper

analgesia/anesthesia would excessively activate NMDA or

other excitatory receptors and lead to excitotoxicity in the

developing brain, and therapeutic doses of anesthetic/

analgesic drugs will reduce the degree of neuronal excita-

tion [53]. In a recent study, tail-clamp injury had no effect

on sevoflurane-induced histological and neurobehavioral

changes in rodents [37]. It seems that surgical injury does

not necessarily involve anesthetic neurotoxicity. Previous

animal studies on the neurotoxicity of anesthetics have

often been criticized for lacking a surgical stimulus.

However, this study was the first to introduce tissue injury

to the investigation of anesthetic neurotoxicity, and further

studies with greater surgical stimuli should be done

because cardiac surgery or other major procedures such as

laparotomy definitely causes greater stress than tail-

clamping.

The large number of animal experiments that have

reported some degree of anesthetic neurotoxicity have

promoted researchers to look for clinical evidence of the

neurotoxic effects of anesthetics. Although no prospective

studies have examined the effects of clinical doses of
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anesthetics on brain structure or neurocognitive function,

some retrospective studies have identified a significant

association between early anesthesia and long-term brain

development, whereas other studies have failed to dem-

onstrate an association [54–59]. A population-based cohort

study showed children (\4 years old) that received two or

more periods of anesthesia had an increased risk of learn-

ing disabilities, whereas a single exposure to an anesthetic

agent was not a risk factor [54]. These results are consistent

with animal experiments that showed that repeated expo-

sure, but not a single exposure, was associated with

increased neuroapoptosis. Using the same methodology

and cohort, this research group found that a brief fetal

exposure to anesthesia at the time of cesarean delivery did

not increase the risk of long-term learning disability com-

pared with vaginal delivery without anesthesia [55]. Both

of these studies [54, 55] suggest a relationship between

early anesthesia and long-term learning disability, but there

are also several limitations in the interpretation of these

studies. First, these two studies followed patient cohorts

that received anesthesia before 1982, and the agents com-

monly used at that time (halothane and nitrous oxide) are

no longer used in clinical practice today. In addition,

although the authors were careful to adjust for known

confounders (e.g., sex, age, birth weight and maternal

education), undetected hypoxia and hypercapnia may have

affected the outcomes, because there was no pulse oxim-

etry or capnography monitoring during anesthesia at that

time. Therefore, according to the significant changes in

anesthesia practice over the past 30 years, the results of

these two retrospective studies may not be applicable to

current pediatric anesthesia. The use of learning disability

as an outcome measure may be another important limita-

tion of these two studies. Learning disability is a categor-

ical variable, and there is no standardized method for its

assessment. Learning disability involves language, verbal

and math, which clearly have divergent neurobiological

bases in discrete brain regions. In these two studies, lan-

guage, verbal, and math were lumped together into a single

outcome measure, which is non-specific and the authors

may have missed some other neurocognitive impairments.

To exclude underlying specific conditions that may

impair neurocognitive development, two other studies that

had divergent endpoints used a cohort of children who

underwent inguinal hernia repair as the exposure group and

an age-matched population as the control group [56, 57]. In

the ethnically and socioeconomically homogeneous Danish

population, a nationwide study found no connection

between a single, relatively brief period of anesthesia

(30–60 min) in infancy and reduced academic performance

at age 15 or 16, after controlling for important confounding

variables [56]. Although these results are reassuring, the

authors also concluded that they can not exclude deficits in

particular cognitive domains, and the effects of longer

anesthetic durations could not be detected with this study

design. Another study examined medical records for New

York State using ICD-9 diagnostic codes for unspecific

developmental delay or behavioral disorder. The authors

found a 2.3-fold increase in the abnormal neurologic out-

comes in children who had undergone herniorrhaphy under

general anesthesia [57]. One important criticism is that the

morbidity of birth complications such as low birth weight,

congenital anomaly of the CNS and perinatal hypoxia were

higher in the herniorrhaphy group, whereas the incidence

of perinatal infection and hemorrhage was similar between

the groups, but the authors treated them equally in the

statistical analysis. It is apparent that these are not all equal

in inducing neurocognitive impairment. Another criticism

is that the authors defined a fairly wide range of abnormal

neurologic outcomes, including mental retardation, autism

and language or speech problems that are not seen in ani-

mal experiments.

In another retrospective study, parental questionnaires

from children who had undergone urologic surgery at \2

years of age revealed an interesting trend towards a greater

prevalence of learning deficits in children who had early

surgery [58]. Although the results are alarming, the small

number of patients makes it impossible to draw any

definitive conclusions from this study. The authors also

admitted that they would need approximately 10 times the

number already studied to confirm or refute an effect of

anesthesia on neurocognitive development.

Because monozygotic twins have identical genomes and

similar socioeconomic environments, these pairs of chil-

dren are thought to be the best-controlled study group for

comparison. If the twin who receives anesthesia is more

likely to have neurocognitive abnormalities than his

genetic duplicate, it would provide strong evidence that

surgery and anesthesia in early age is detrimental to brain

development. A recent study examined educational

attainment and cognitive problems/inattention of 1,143

monozygotic twins [59]. Although early exposure to

anesthesia (\3 years) was associated with reduced educa-

tional achievement, there were no differences between twin

pairs when they were discordant for anesthesia exposure.

They attributed this result to comorbidity, but not surgery

with anesthesia. This work also has some limitations. First,

the authors didn’t specify the types of anesthesia and data

on the indications for surgery. Further, they used academic

achievement scores but not direct assessment of learning

disability as an objective outcome, and the former can be

influenced by many different factors.

The human data derived from these nonrandomized pilot

studies are still insufficient to either support or refute ani-

mal experiments because of substantial inherent limita-

tions. First, it is extremely difficult to separate out the
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contributions of anesthesia and surgical injury to cognitive

outcome in these clinical studies, and it would not be

surprising that young children that need one or more sur-

geries are at higher risk for learning disabilities than their

age-matched peers. Second, these reports used very dif-

ferent outcome measures to assess the effects of anesthesia,

such as learning disabilities, academic scores and parental

questionnaires. These outcome measures may lack speci-

ficity and standardization in most cases. Another challenge

inherent in these studies is the definition of a comparison

group. Theoretically, the comparison group should be

identical to the exposed group, except that the babies in the

comparison group have never been anesthetized or

received any other neurotoxic agents. This is impossible in

retrospective studies because every child in the cohort is

genetically different and has a different socioeconomic

environment, which will fundamentally affect brain

development. Other obstacles include the retrospective

nature of the studies and the lack of precise information on

the duration and dose of anesthetics.

Conclusions

On the basis of a large number of published findings, it is

becoming wildly accepted that developmental anesthesia

can induce significant and widespread neuroapoptosis and

long-term neurocognitive dysfunction in immature ani-

mals. However, these results have not been confirmed in

controlled clinical trials. Even if future epidemiologic

studies indicate a strong association between early anes-

thesia and developmental dysfunction, it will still be dif-

ficult to prove that the dysfunction is a direct cause of

anesthesia. In sum, the relationship between laboratory

results and clinical anesthesia practice is a prominent but

controversial question, based on currently insufficient

available information, especially in humans. Therefore, it

is unreasonable to withhold anesthesia from children who

need surgery. Intense efforts should be made to obtain

definitive data from well-designed prospective randomized

controlled trials. Only then will it be possible to use

existing anesthetics with minimum concern for their neu-

rotoxic effects.
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